Feedback–invariant Optimal Control Theory and Differential Geometry, II. Jacobi Curves for Singular Extremals
نویسنده
چکیده
This is the second article in the series opened by the paper [4]. Jacobi curves were defined, computed, and studied in that paper for regular extremals of smooth control systems. Here we do the same for singular extremals. The last section contains a feedback classification and normal forms of generic single–input affine in control systems on a 3-dimensional manifold.
منابع مشابه
Differential Geometry of Curves in Lagrange Grassmannians with given Young Diagram
Curves in Lagrange Grassmannians appear naturally in the intrinsic study of geometric structures on manifolds. By a smooth geometric structure on a manifold we mean any submanifold of its tangent bundle, transversal to the fibers. One can consider the time-optimal problem naturally associate with a geometric structure. The Pontryagin extremals of this optimal problem are integral curves of cert...
متن کاملComplete systems of invariants for rank 1 curves in Lagrange Grassmannians
Curves in Lagrange Grassmannians naturally appear when one studies intrinsically ”the Jacobi equations for extremals”, associated with control systems and geometric structures. In this way one reduces the problem of construction of the curvature-type invariants for these objects to the much more concrete problem of finding of invariants of curves in Lagrange Grassmannians w.r.t. the action of t...
متن کاملThe regularity problem for sub-Riemannian geodesics
One of the main open problems in sub-Riemannian geometry is the regularity of length minimizing curves, see [12, Problem 10.1]. All known examples of length minimizing curves are smooth. On the other hand, there is no regularity theory of a general character for sub-Riemannian geodesics. It was originally claimed by Strichartz in [15] that length minimizing curves are smooth, all of them being ...
متن کاملOptimal Control for Descriptor Systems: Tracking Problem (RESEARCH NOTE)
Singular systems have been studied extensively during the last two decades due Abstract to their many practical applications. Such systems possess numerous properties not shared by the well-known state variable systems. This paper considers the linear tracking problem for the continuous-time singular systems. The Hamilton-Jacobi theory is used in order to compute the optimal control and associa...
متن کاملSingularities of Optimal Control Problems on some Six Dimensional Lie groups
This paper considers the motion planning problem for oriented vehicles travelling at unit speed in a threedimensional space. A Lie group formulation arises naturally and the vehicles are modelled as kinematic control systems with drift defined on the orthonormal frame bundles of particular Riemannian manifolds, specifically the three-dimensional space forms Euclidean space E, the sphere S and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017